3.102 \(\int (c+d x)^2 (a+a \sin (e+f x))^2 \, dx\)

Optimal. Leaf size=168 \[ \frac{a^2 d (c+d x) \sin ^2(e+f x)}{2 f^2}+\frac{4 a^2 d (c+d x) \sin (e+f x)}{f^2}-\frac{2 a^2 (c+d x)^2 \cos (e+f x)}{f}-\frac{a^2 (c+d x)^2 \sin (e+f x) \cos (e+f x)}{2 f}+\frac{a^2 (c+d x)^3}{2 d}+\frac{4 a^2 d^2 \cos (e+f x)}{f^3}+\frac{a^2 d^2 \sin (e+f x) \cos (e+f x)}{4 f^3}-\frac{a^2 d^2 x}{4 f^2} \]

[Out]

-(a^2*d^2*x)/(4*f^2) + (a^2*(c + d*x)^3)/(2*d) + (4*a^2*d^2*Cos[e + f*x])/f^3 - (2*a^2*(c + d*x)^2*Cos[e + f*x
])/f + (4*a^2*d*(c + d*x)*Sin[e + f*x])/f^2 + (a^2*d^2*Cos[e + f*x]*Sin[e + f*x])/(4*f^3) - (a^2*(c + d*x)^2*C
os[e + f*x]*Sin[e + f*x])/(2*f) + (a^2*d*(c + d*x)*Sin[e + f*x]^2)/(2*f^2)

________________________________________________________________________________________

Rubi [A]  time = 0.19208, antiderivative size = 168, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.35, Rules used = {3317, 3296, 2638, 3311, 32, 2635, 8} \[ \frac{a^2 d (c+d x) \sin ^2(e+f x)}{2 f^2}+\frac{4 a^2 d (c+d x) \sin (e+f x)}{f^2}-\frac{2 a^2 (c+d x)^2 \cos (e+f x)}{f}-\frac{a^2 (c+d x)^2 \sin (e+f x) \cos (e+f x)}{2 f}+\frac{a^2 (c+d x)^3}{2 d}+\frac{4 a^2 d^2 \cos (e+f x)}{f^3}+\frac{a^2 d^2 \sin (e+f x) \cos (e+f x)}{4 f^3}-\frac{a^2 d^2 x}{4 f^2} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^2*(a + a*Sin[e + f*x])^2,x]

[Out]

-(a^2*d^2*x)/(4*f^2) + (a^2*(c + d*x)^3)/(2*d) + (4*a^2*d^2*Cos[e + f*x])/f^3 - (2*a^2*(c + d*x)^2*Cos[e + f*x
])/f + (4*a^2*d*(c + d*x)*Sin[e + f*x])/f^2 + (a^2*d^2*Cos[e + f*x]*Sin[e + f*x])/(4*f^3) - (a^2*(c + d*x)^2*C
os[e + f*x]*Sin[e + f*x])/(2*f) + (a^2*d*(c + d*x)*Sin[e + f*x]^2)/(2*f^2)

Rule 3317

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, (a + b*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 0] && (EqQ[n, 1] ||
IGtQ[m, 0] || NeQ[a^2 - b^2, 0])

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3311

Int[((c_.) + (d_.)*(x_))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d*m*(c + d*x)^(m - 1)*(
b*Sin[e + f*x])^n)/(f^2*n^2), x] + (Dist[(b^2*(n - 1))/n, Int[(c + d*x)^m*(b*Sin[e + f*x])^(n - 2), x], x] - D
ist[(d^2*m*(m - 1))/(f^2*n^2), Int[(c + d*x)^(m - 2)*(b*Sin[e + f*x])^n, x], x] - Simp[(b*(c + d*x)^m*Cos[e +
f*x]*(b*Sin[e + f*x])^(n - 1))/(f*n), x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 1]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int (c+d x)^2 (a+a \sin (e+f x))^2 \, dx &=\int \left (a^2 (c+d x)^2+2 a^2 (c+d x)^2 \sin (e+f x)+a^2 (c+d x)^2 \sin ^2(e+f x)\right ) \, dx\\ &=\frac{a^2 (c+d x)^3}{3 d}+a^2 \int (c+d x)^2 \sin ^2(e+f x) \, dx+\left (2 a^2\right ) \int (c+d x)^2 \sin (e+f x) \, dx\\ &=\frac{a^2 (c+d x)^3}{3 d}-\frac{2 a^2 (c+d x)^2 \cos (e+f x)}{f}-\frac{a^2 (c+d x)^2 \cos (e+f x) \sin (e+f x)}{2 f}+\frac{a^2 d (c+d x) \sin ^2(e+f x)}{2 f^2}+\frac{1}{2} a^2 \int (c+d x)^2 \, dx-\frac{\left (a^2 d^2\right ) \int \sin ^2(e+f x) \, dx}{2 f^2}+\frac{\left (4 a^2 d\right ) \int (c+d x) \cos (e+f x) \, dx}{f}\\ &=\frac{a^2 (c+d x)^3}{2 d}-\frac{2 a^2 (c+d x)^2 \cos (e+f x)}{f}+\frac{4 a^2 d (c+d x) \sin (e+f x)}{f^2}+\frac{a^2 d^2 \cos (e+f x) \sin (e+f x)}{4 f^3}-\frac{a^2 (c+d x)^2 \cos (e+f x) \sin (e+f x)}{2 f}+\frac{a^2 d (c+d x) \sin ^2(e+f x)}{2 f^2}-\frac{\left (a^2 d^2\right ) \int 1 \, dx}{4 f^2}-\frac{\left (4 a^2 d^2\right ) \int \sin (e+f x) \, dx}{f^2}\\ &=-\frac{a^2 d^2 x}{4 f^2}+\frac{a^2 (c+d x)^3}{2 d}+\frac{4 a^2 d^2 \cos (e+f x)}{f^3}-\frac{2 a^2 (c+d x)^2 \cos (e+f x)}{f}+\frac{4 a^2 d (c+d x) \sin (e+f x)}{f^2}+\frac{a^2 d^2 \cos (e+f x) \sin (e+f x)}{4 f^3}-\frac{a^2 (c+d x)^2 \cos (e+f x) \sin (e+f x)}{2 f}+\frac{a^2 d (c+d x) \sin ^2(e+f x)}{2 f^2}\\ \end{align*}

Mathematica [A]  time = 0.613693, size = 182, normalized size = 1.08 \[ \frac{a^2 \left (-16 \left (c^2 f^2+2 c d f^2 x+d^2 \left (f^2 x^2-2\right )\right ) \cos (e+f x)-2 c^2 f^2 \sin (2 (e+f x))+12 c^2 f^3 x-4 c d f^2 x \sin (2 (e+f x))+32 c d f \sin (e+f x)-2 d f (c+d x) \cos (2 (e+f x))+12 c d f^3 x^2-2 d^2 f^2 x^2 \sin (2 (e+f x))+32 d^2 f x \sin (e+f x)+d^2 \sin (2 (e+f x))+4 d^2 f^3 x^3\right )}{8 f^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^2*(a + a*Sin[e + f*x])^2,x]

[Out]

(a^2*(12*c^2*f^3*x + 12*c*d*f^3*x^2 + 4*d^2*f^3*x^3 - 16*(c^2*f^2 + 2*c*d*f^2*x + d^2*(-2 + f^2*x^2))*Cos[e +
f*x] - 2*d*f*(c + d*x)*Cos[2*(e + f*x)] + 32*c*d*f*Sin[e + f*x] + 32*d^2*f*x*Sin[e + f*x] + d^2*Sin[2*(e + f*x
)] - 2*c^2*f^2*Sin[2*(e + f*x)] - 4*c*d*f^2*x*Sin[2*(e + f*x)] - 2*d^2*f^2*x^2*Sin[2*(e + f*x)]))/(8*f^3)

________________________________________________________________________________________

Maple [B]  time = 0.02, size = 567, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^2*(a+a*sin(f*x+e))^2,x)

[Out]

1/f*(a^2/f^2*d^2*((f*x+e)^2*(-1/2*sin(f*x+e)*cos(f*x+e)+1/2*f*x+1/2*e)-1/2*(f*x+e)*cos(f*x+e)^2+1/4*sin(f*x+e)
*cos(f*x+e)+1/4*f*x+1/4*e-1/3*(f*x+e)^3)+2*a^2/f*c*d*((f*x+e)*(-1/2*sin(f*x+e)*cos(f*x+e)+1/2*f*x+1/2*e)-1/4*(
f*x+e)^2+1/4*sin(f*x+e)^2)-2*a^2/f^2*d^2*e*((f*x+e)*(-1/2*sin(f*x+e)*cos(f*x+e)+1/2*f*x+1/2*e)-1/4*(f*x+e)^2+1
/4*sin(f*x+e)^2)+a^2*c^2*(-1/2*sin(f*x+e)*cos(f*x+e)+1/2*f*x+1/2*e)-2*a^2/f*c*d*e*(-1/2*sin(f*x+e)*cos(f*x+e)+
1/2*f*x+1/2*e)+a^2/f^2*d^2*e^2*(-1/2*sin(f*x+e)*cos(f*x+e)+1/2*f*x+1/2*e)+2*a^2/f^2*d^2*(-(f*x+e)^2*cos(f*x+e)
+2*cos(f*x+e)+2*(f*x+e)*sin(f*x+e))+4*a^2/f*c*d*(sin(f*x+e)-(f*x+e)*cos(f*x+e))-4*a^2/f^2*d^2*e*(sin(f*x+e)-(f
*x+e)*cos(f*x+e))-2*a^2*c^2*cos(f*x+e)+4*a^2/f*c*d*e*cos(f*x+e)-2*a^2/f^2*d^2*e^2*cos(f*x+e)+1/3*a^2/f^2*d^2*(
f*x+e)^3+a^2/f*c*d*(f*x+e)^2-a^2/f^2*d^2*e*(f*x+e)^2+a^2*c^2*(f*x+e)-2*a^2/f*c*d*e*(f*x+e)+a^2/f^2*d^2*e^2*(f*
x+e))

________________________________________________________________________________________

Maxima [B]  time = 1.02159, size = 686, normalized size = 4.08 \begin{align*} \frac{6 \,{\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c^{2} + 24 \,{\left (f x + e\right )} a^{2} c^{2} + \frac{8 \,{\left (f x + e\right )}^{3} a^{2} d^{2}}{f^{2}} - \frac{24 \,{\left (f x + e\right )}^{2} a^{2} d^{2} e}{f^{2}} + \frac{6 \,{\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} d^{2} e^{2}}{f^{2}} + \frac{24 \,{\left (f x + e\right )} a^{2} d^{2} e^{2}}{f^{2}} + \frac{24 \,{\left (f x + e\right )}^{2} a^{2} c d}{f} - \frac{12 \,{\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c d e}{f} - \frac{48 \,{\left (f x + e\right )} a^{2} c d e}{f} - 48 \, a^{2} c^{2} \cos \left (f x + e\right ) - \frac{48 \, a^{2} d^{2} e^{2} \cos \left (f x + e\right )}{f^{2}} + \frac{96 \, a^{2} c d e \cos \left (f x + e\right )}{f} - \frac{6 \,{\left (2 \,{\left (f x + e\right )}^{2} - 2 \,{\left (f x + e\right )} \sin \left (2 \, f x + 2 \, e\right ) - \cos \left (2 \, f x + 2 \, e\right )\right )} a^{2} d^{2} e}{f^{2}} + \frac{96 \,{\left ({\left (f x + e\right )} \cos \left (f x + e\right ) - \sin \left (f x + e\right )\right )} a^{2} d^{2} e}{f^{2}} + \frac{6 \,{\left (2 \,{\left (f x + e\right )}^{2} - 2 \,{\left (f x + e\right )} \sin \left (2 \, f x + 2 \, e\right ) - \cos \left (2 \, f x + 2 \, e\right )\right )} a^{2} c d}{f} - \frac{96 \,{\left ({\left (f x + e\right )} \cos \left (f x + e\right ) - \sin \left (f x + e\right )\right )} a^{2} c d}{f} + \frac{{\left (4 \,{\left (f x + e\right )}^{3} - 6 \,{\left (f x + e\right )} \cos \left (2 \, f x + 2 \, e\right ) - 3 \,{\left (2 \,{\left (f x + e\right )}^{2} - 1\right )} \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} d^{2}}{f^{2}} - \frac{48 \,{\left ({\left ({\left (f x + e\right )}^{2} - 2\right )} \cos \left (f x + e\right ) - 2 \,{\left (f x + e\right )} \sin \left (f x + e\right )\right )} a^{2} d^{2}}{f^{2}}}{24 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^2*(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

1/24*(6*(2*f*x + 2*e - sin(2*f*x + 2*e))*a^2*c^2 + 24*(f*x + e)*a^2*c^2 + 8*(f*x + e)^3*a^2*d^2/f^2 - 24*(f*x
+ e)^2*a^2*d^2*e/f^2 + 6*(2*f*x + 2*e - sin(2*f*x + 2*e))*a^2*d^2*e^2/f^2 + 24*(f*x + e)*a^2*d^2*e^2/f^2 + 24*
(f*x + e)^2*a^2*c*d/f - 12*(2*f*x + 2*e - sin(2*f*x + 2*e))*a^2*c*d*e/f - 48*(f*x + e)*a^2*c*d*e/f - 48*a^2*c^
2*cos(f*x + e) - 48*a^2*d^2*e^2*cos(f*x + e)/f^2 + 96*a^2*c*d*e*cos(f*x + e)/f - 6*(2*(f*x + e)^2 - 2*(f*x + e
)*sin(2*f*x + 2*e) - cos(2*f*x + 2*e))*a^2*d^2*e/f^2 + 96*((f*x + e)*cos(f*x + e) - sin(f*x + e))*a^2*d^2*e/f^
2 + 6*(2*(f*x + e)^2 - 2*(f*x + e)*sin(2*f*x + 2*e) - cos(2*f*x + 2*e))*a^2*c*d/f - 96*((f*x + e)*cos(f*x + e)
 - sin(f*x + e))*a^2*c*d/f + (4*(f*x + e)^3 - 6*(f*x + e)*cos(2*f*x + 2*e) - 3*(2*(f*x + e)^2 - 1)*sin(2*f*x +
 2*e))*a^2*d^2/f^2 - 48*(((f*x + e)^2 - 2)*cos(f*x + e) - 2*(f*x + e)*sin(f*x + e))*a^2*d^2/f^2)/f

________________________________________________________________________________________

Fricas [A]  time = 1.78484, size = 447, normalized size = 2.66 \begin{align*} \frac{2 \, a^{2} d^{2} f^{3} x^{3} + 6 \, a^{2} c d f^{3} x^{2} - 2 \,{\left (a^{2} d^{2} f x + a^{2} c d f\right )} \cos \left (f x + e\right )^{2} +{\left (6 \, a^{2} c^{2} f^{3} + a^{2} d^{2} f\right )} x - 8 \,{\left (a^{2} d^{2} f^{2} x^{2} + 2 \, a^{2} c d f^{2} x + a^{2} c^{2} f^{2} - 2 \, a^{2} d^{2}\right )} \cos \left (f x + e\right ) +{\left (16 \, a^{2} d^{2} f x + 16 \, a^{2} c d f -{\left (2 \, a^{2} d^{2} f^{2} x^{2} + 4 \, a^{2} c d f^{2} x + 2 \, a^{2} c^{2} f^{2} - a^{2} d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{4 \, f^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^2*(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

1/4*(2*a^2*d^2*f^3*x^3 + 6*a^2*c*d*f^3*x^2 - 2*(a^2*d^2*f*x + a^2*c*d*f)*cos(f*x + e)^2 + (6*a^2*c^2*f^3 + a^2
*d^2*f)*x - 8*(a^2*d^2*f^2*x^2 + 2*a^2*c*d*f^2*x + a^2*c^2*f^2 - 2*a^2*d^2)*cos(f*x + e) + (16*a^2*d^2*f*x + 1
6*a^2*c*d*f - (2*a^2*d^2*f^2*x^2 + 4*a^2*c*d*f^2*x + 2*a^2*c^2*f^2 - a^2*d^2)*cos(f*x + e))*sin(f*x + e))/f^3

________________________________________________________________________________________

Sympy [A]  time = 2.15149, size = 456, normalized size = 2.71 \begin{align*} \begin{cases} \frac{a^{2} c^{2} x \sin ^{2}{\left (e + f x \right )}}{2} + \frac{a^{2} c^{2} x \cos ^{2}{\left (e + f x \right )}}{2} + a^{2} c^{2} x - \frac{a^{2} c^{2} \sin{\left (e + f x \right )} \cos{\left (e + f x \right )}}{2 f} - \frac{2 a^{2} c^{2} \cos{\left (e + f x \right )}}{f} + \frac{a^{2} c d x^{2} \sin ^{2}{\left (e + f x \right )}}{2} + \frac{a^{2} c d x^{2} \cos ^{2}{\left (e + f x \right )}}{2} + a^{2} c d x^{2} - \frac{a^{2} c d x \sin{\left (e + f x \right )} \cos{\left (e + f x \right )}}{f} - \frac{4 a^{2} c d x \cos{\left (e + f x \right )}}{f} + \frac{4 a^{2} c d \sin{\left (e + f x \right )}}{f^{2}} - \frac{a^{2} c d \cos ^{2}{\left (e + f x \right )}}{2 f^{2}} + \frac{a^{2} d^{2} x^{3} \sin ^{2}{\left (e + f x \right )}}{6} + \frac{a^{2} d^{2} x^{3} \cos ^{2}{\left (e + f x \right )}}{6} + \frac{a^{2} d^{2} x^{3}}{3} - \frac{a^{2} d^{2} x^{2} \sin{\left (e + f x \right )} \cos{\left (e + f x \right )}}{2 f} - \frac{2 a^{2} d^{2} x^{2} \cos{\left (e + f x \right )}}{f} + \frac{a^{2} d^{2} x \sin ^{2}{\left (e + f x \right )}}{4 f^{2}} + \frac{4 a^{2} d^{2} x \sin{\left (e + f x \right )}}{f^{2}} - \frac{a^{2} d^{2} x \cos ^{2}{\left (e + f x \right )}}{4 f^{2}} + \frac{a^{2} d^{2} \sin{\left (e + f x \right )} \cos{\left (e + f x \right )}}{4 f^{3}} + \frac{4 a^{2} d^{2} \cos{\left (e + f x \right )}}{f^{3}} & \text{for}\: f \neq 0 \\\left (a \sin{\left (e \right )} + a\right )^{2} \left (c^{2} x + c d x^{2} + \frac{d^{2} x^{3}}{3}\right ) & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**2*(a+a*sin(f*x+e))**2,x)

[Out]

Piecewise((a**2*c**2*x*sin(e + f*x)**2/2 + a**2*c**2*x*cos(e + f*x)**2/2 + a**2*c**2*x - a**2*c**2*sin(e + f*x
)*cos(e + f*x)/(2*f) - 2*a**2*c**2*cos(e + f*x)/f + a**2*c*d*x**2*sin(e + f*x)**2/2 + a**2*c*d*x**2*cos(e + f*
x)**2/2 + a**2*c*d*x**2 - a**2*c*d*x*sin(e + f*x)*cos(e + f*x)/f - 4*a**2*c*d*x*cos(e + f*x)/f + 4*a**2*c*d*si
n(e + f*x)/f**2 - a**2*c*d*cos(e + f*x)**2/(2*f**2) + a**2*d**2*x**3*sin(e + f*x)**2/6 + a**2*d**2*x**3*cos(e
+ f*x)**2/6 + a**2*d**2*x**3/3 - a**2*d**2*x**2*sin(e + f*x)*cos(e + f*x)/(2*f) - 2*a**2*d**2*x**2*cos(e + f*x
)/f + a**2*d**2*x*sin(e + f*x)**2/(4*f**2) + 4*a**2*d**2*x*sin(e + f*x)/f**2 - a**2*d**2*x*cos(e + f*x)**2/(4*
f**2) + a**2*d**2*sin(e + f*x)*cos(e + f*x)/(4*f**3) + 4*a**2*d**2*cos(e + f*x)/f**3, Ne(f, 0)), ((a*sin(e) +
a)**2*(c**2*x + c*d*x**2 + d**2*x**3/3), True))

________________________________________________________________________________________

Giac [A]  time = 1.14398, size = 279, normalized size = 1.66 \begin{align*} \frac{1}{2} \, a^{2} d^{2} x^{3} + \frac{3}{2} \, a^{2} c d x^{2} + \frac{3}{2} \, a^{2} c^{2} x - \frac{{\left (a^{2} d^{2} f x + a^{2} c d f\right )} \cos \left (2 \, f x + 2 \, e\right )}{4 \, f^{3}} - \frac{2 \,{\left (a^{2} d^{2} f^{2} x^{2} + 2 \, a^{2} c d f^{2} x + a^{2} c^{2} f^{2} - 2 \, a^{2} d^{2}\right )} \cos \left (f x + e\right )}{f^{3}} - \frac{{\left (2 \, a^{2} d^{2} f^{2} x^{2} + 4 \, a^{2} c d f^{2} x + 2 \, a^{2} c^{2} f^{2} - a^{2} d^{2}\right )} \sin \left (2 \, f x + 2 \, e\right )}{8 \, f^{3}} + \frac{4 \,{\left (a^{2} d^{2} f x + a^{2} c d f\right )} \sin \left (f x + e\right )}{f^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^2*(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

1/2*a^2*d^2*x^3 + 3/2*a^2*c*d*x^2 + 3/2*a^2*c^2*x - 1/4*(a^2*d^2*f*x + a^2*c*d*f)*cos(2*f*x + 2*e)/f^3 - 2*(a^
2*d^2*f^2*x^2 + 2*a^2*c*d*f^2*x + a^2*c^2*f^2 - 2*a^2*d^2)*cos(f*x + e)/f^3 - 1/8*(2*a^2*d^2*f^2*x^2 + 4*a^2*c
*d*f^2*x + 2*a^2*c^2*f^2 - a^2*d^2)*sin(2*f*x + 2*e)/f^3 + 4*(a^2*d^2*f*x + a^2*c*d*f)*sin(f*x + e)/f^3